Growth Retardation, Loss of Desmosomal Adhesion, and Impaired Tight Junction Function Identify a Unique Role of Plakophilin 1 In Vivo

Rietscher K, Wolf A, Hause G, Rother A, Keil R, Magin TM, Glass M, Niessen CM, Hatzfeld M

J. Invest. Dermatol. 2016 Mar;

PMID: 27033150

Abstract

Desmosomes mediate strong intercellular adhesion through desmosomal cadherins that interact with intracellular linker proteins including plakophilins (PKPs) 1-3 to anchor the intermediate filaments. PKPs show overlapping but distinct expression patterns in the epidermis. So far, the contribution of individual PKPs in differentially regulating desmosome function is incompletely understood. To resolve the role of PKP1 we ablated the PKP1 gene. Here, we report that PKP1(-/-) mice were born at the expected mendelian ratio with reduced birth weight, but they otherwise appeared normal immediately after birth. However, their condition rapidly declined, and the mice died within 24 hours, developing fragile skin with lesions in the absence of obvious mechanical trauma. This was accompanied by sparse and small desmosomes. Newborn PKP1(-/-) mice showed disturbed tight junctions with an impaired inside-out barrier, whereas the outside-in barrier was unaffected. Keratinocytes isolated from these mice showed strongly reduced intercellular cohesion, delayed tight junction formation, and reduced transepithelial resistance and reduced proliferation rates. Our study shows a nonredundant and essential role of PKP1 in desmosome and tight junction function and supports a role of PKP1 in growth control, a function that is crucial in wound healing and epidermal carcinogenesis.

  • News

  • Upcoming Events

    There are no upcoming events at this time.

  • November 2020
    M T W T F S S
     1
    2345678
    9101112131415
    16171819202122
    23242526272829
    30  

© 2017 SFB 829

Durch die weitere Nutzung der Seite stimmst du der Verwendung von Cookies zu. Weitere Informationen

Die Cookie-Einstellungen auf dieser Website sind auf "Cookies zulassen" eingestellt, um das beste Surferlebnis zu ermöglichen. Wenn du diese Website ohne Änderung der Cookie-Einstellungen verwendest oder auf "Akzeptieren" klickst, erklärst du sich damit einverstanden.

Schließen