Imatinib Triggers Phagolysosome Acidification and Antimicrobial Activity against Mycobacterium bovis Bacille Calmette-Guérin in Glucocorticoid-Treated Human Macrophages

Steiger J, Stephan A, Inkeles MS, Realegeno S, Bruns H, Kröll P, de Castro Kroner J, Sommer A, Batinica M, Pitzler L, Kalscheuer R, Hartmann P, Plum G, Stenger S, Pellegrini M, Brachvogel B, Modlin RL, Fabri M

J. Immunol. 2016 May;

PMID: 27233968

Abstract

Glucocorticoids are extensively used to treat inflammatory diseases; however, their chronic intake increases the risk for mycobacterial infections. Meanwhile, the effects of glucocorticoids on innate host responses are incompletely understood. In this study, we investigated the direct effects of glucocorticoids on antimycobacterial host defense in primary human macrophages. We found that glucocorticoids triggered the expression of cathelicidin, an antimicrobial critical for antimycobacterial responses, independent of the intracellular vitamin D metabolism. Despite upregulating cathelicidin, glucocorticoids failed to promote macrophage antimycobacterial activity. Gene expression profiles of human macrophages treated with glucocorticoids and/or IFN-γ, which promotes induction of cathelicidin, as well as antimycobacterial activity, were investigated. Using weighted gene coexpression network analysis, we identified a module of highly connected genes that was strongly inversely correlated with glucocorticoid treatment and associated with IFN-γ stimulation. This module was linked to the biological functions autophagy, phagosome maturation, and lytic vacuole/lysosome, and contained the vacuolar H(+)-ATPase subunit a3, alias TCIRG1, a known antimycobacterial host defense gene, as a top hub gene. We next found that glucocorticoids, in contrast with IFN-γ, failed to trigger expression and phagolysosome recruitment of TCIRG1, as well as to promote lysosome acidification. Finally, we demonstrated that the tyrosine kinase inhibitor imatinib induces lysosome acidification and antimicrobial activity in glucocorticoid-treated macrophages without reversing the anti-inflammatory effects of glucocorticoids. Taken together, we provide evidence that the induction of cathelicidin by glucocorticoids is not sufficient for macrophage antimicrobial activity, and identify the vacuolar H(+)-ATPase as a potential target for host-directed therapy in the context of glucocorticoid therapy.

  • Upcoming Events

    1. Women in Science and Society with Sarah Millar

      June 19 @ 1:30 pm - 6:00 pm
    2. 9th PhD student and Postdoc Retreat

      August 22 - August 23
    3. 2nd SFB 829 Connector Meeting

      August 31 @ 3:00 pm - 5:30 pm
    4. International Symposium “Molecular Mechanisms regulating Skin Homeostasis”

      November 12 - November 14
    5. 3rd SFB 829 Connector Meeting

      December 7 @ 3:00 pm - 5:30 pm
  • News

© 2017 SFB 829

Durch die weitere Nutzung der Seite stimmst du der Verwendung von Cookies zu. Weitere Informationen

Die Cookie-Einstellungen auf dieser Website sind auf "Cookies zulassen" eingestellt, um das beste Surferlebnis zu ermöglichen. Wenn du diese Website ohne Änderung der Cookie-Einstellungen verwendest oder auf "Akzeptieren" klickst, erklärst du sich damit einverstanden.

Schließen