Combined role of collagen IX and COMP in cartilage matrix assembly – COMP counteracts collagen IX limitation of cartilage collagen fibril growth (2009)

publicationsBlumbach, K., Bastiaansen-Jenniskens, Y.M., DeGroot, J., Paulsson, M., Van Osch, G.V.J.M., and Zaucke, F., Arthritis Rheum. 2009 Dec;60(12):3676-85. doi: 10.1002/art.24979.



Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril-associated proteins type IX collagen and cartilage oligomeric matrix protein (COMP) during cartilage matrix formation.


Primary chondrocytes from mice deficient in type IX collagen and COMP (double-deficient) were cultured in monolayer or alginate beads. Anchorage of matrix proteins, proteoglycan and collagen content, collagen crosslinks, matrix metalloproteinase activity, and mechanical properties of the matrix were measured. Electron microscopy was used to study the formation of fibrillar structures.


In cartilage lacking both type IX collagen and COMP, matrilin 3 showed decreased matrix anchorage. Less matrilin 3 was deposited in the matrix of double-deficient chondrocytes, while larger amounts were secreted into the medium. Proteoglycans were less well retained in the matrix formed in alginate cultures, while collagen deposition was not significantly affected. Electron microscopy revealed similar cartilage collagen fibril diameters in the cultures of double-deficient and wild-type chondrocytes. In contrast, a larger fibril diameter was observed in the matrix of chondrocytes deficient in only type IX collagen.


Our results show that type IX collagen and COMP are involved in matrix assembly by mediating the anchorage and regulating the distribution of other matrix macromolecules such as proteoglycans and matrilins and have counteracting effects on collagen fibril growth. Loss of type IX collagen and COMP leads to matrix aberrations that may make cartilage more susceptible to degeneration.



  • News

  • Upcoming Events

    There are no upcoming events at this time.

  • October 2022
    M T W T F S S

© 2017 SFB 829

Durch die weitere Nutzung der Seite stimmst du der Verwendung von Cookies zu. Weitere Informationen

Die Cookie-Einstellungen auf dieser Website sind auf "Cookies zulassen" eingestellt, um das beste Surferlebnis zu ermöglichen. Wenn du diese Website ohne Änderung der Cookie-Einstellungen verwendest oder auf "Akzeptieren" klickst, erklärst du sich damit einverstanden.