Stabilization of integrin-linked kinase by the Hsp90-CHIP axis impacts cellular force generation, migration and the fibrotic response

A11 WICKSTRÖMB3 ECKES KRIEGpublications Radovanac K, Morgner J, Schulz JN, Blumbach K, Patterson C, Geiger T, Mann M, Krieg T, Eckes B, Fässler R, Wickström SA; EMBO J. 2013 May 15;32(10):1409-24. doi: 10.1038/emboj.2013.90. Epub 2013 Apr 23.



Integrin-linked kinase (ILK) is an adaptor protein required to establish and maintain the connection between integrins and the actin cytoskeleton. This linkage is essential for generating force between the extracellular matrix (ECM) and the cell during migration and matrix remodelling. The mechanisms by which ILK stability and turnover are regulated are unknown. Here we report that the E3 ligase CHIP-heat shock protein 90 (Hsp90) axis regulates ILK turnover in fibroblasts. The chaperone Hsp90 stabilizes ILK and facilitates the interaction of ILK with α-parvin. When Hsp90 activity is blocked, ILK is ubiquitinated by CHIP and degraded by the proteasome, resulting in impaired fibroblast migration and a dramatic reduction in the fibrotic response to bleomycin in mice. Together, our results uncover how Hsp90 regulates ILK stability and identify a potential therapeutic strategy to alleviate fibrotic diseases.




  • Upcoming Events

    1. Keio-Cologne Symposium on Ageing and Longevity

      Februar 4 - Februar 6
    2. Cologne Seminars on Ageing Series 2018 with Elaine Fuchs

      März 6 @ 4:00 pm - 5:30 pm
    3. SFB 829 Connector Meeting

      April 6 @ 3:00 pm - 5:30 pm
    4. SFB 829 Connector Meeting

      August 31 @ 3:00 pm - 5:30 pm
    5. International Symposium „Molecular Mechanisms regulating Skin Homeostasis“

      November 12 - November 14
  • News

© 2017 SFB 829