The fibrillin microfibril scaffold: A niche for growth factors and mechanosensation?

Sengle G, Sakai LY

Matrix Biol. 2015 Sep;47:3-12

PMID: 25957947

Abstract

The fibrillins, large extracellular matrix molecules, are polymerized to form “microfibrils.” The fibrillin microfibril scaffold is populated by microfibril-associated proteins and by growth factors, which are likely to be latent. The scaffold, associated proteins, and bound growth factors, together with cellular receptors that can sense the microfibril matrix, constitute the fibrillin microenvironment. Activation of TGFβ signaling is associated with the Marfan syndrome, which is caused by mutations in fibrillin-1. Today we know that mutations in fibrillin-1 cause the Marfan syndrome as well as Weill-Marchesani syndrome (and other acromelic dysplasias) and result in opposite clinical phenotypes: tall or short stature; arachnodactyly or brachydactyly; joint hypermobility or stiff joints; hypomuscularity or hypermuscularity. We also know that these different syndromes are associated with different structural abnormalities in the fibrillin microfibril scaffold and perhaps with specific cellular receptors (mechanosensors). How does the microenvironment, framed by the microfibril scaffold and populated by latent growth factors, work? We must await future investigations for the molecular and cellular mechanisms that will answer this question. However, today we can appreciate the importance of the fibrillin microfibril niche as a contextual environment for growth factor signaling and potentially for mechanosensation.

  • News

  • Upcoming Events

    There are no upcoming events at this time.

  • December 2020
    M T W T F S S
     123456
    78910111213
    14151617181920
    21222324252627
    28293031  

© 2017 SFB 829

Durch die weitere Nutzung der Seite stimmst du der Verwendung von Cookies zu. Weitere Informationen

Die Cookie-Einstellungen auf dieser Website sind auf "Cookies zulassen" eingestellt, um das beste Surferlebnis zu ermöglichen. Wenn du diese Website ohne Änderung der Cookie-Einstellungen verwendest oder auf "Akzeptieren" klickst, erklärst du sich damit einverstanden.

Schließen